LENGTH OF SIDE

Pearson Edexcel - Tuesday 12 June 2018 - Paper 3 (Calculator) Higher Tier

1.

Various.			seneme	· · · · · · · · · · · · · · · · · · ·
17	13.1	P1	for start of process to find the length of <i>BD</i> , eg $\frac{BD}{\sin 34^{\circ}} = \frac{12.5}{\sin 109^{\circ}}$	
		P1	for complete process to find the length of <i>BD</i> , eg $BD = \frac{12.5}{\sin 109^{\circ}} \times \sin 34^{\circ}$ (= 7.39)	Accept 7.4 for the award of the first two P marks
		P1	for process to find the length of <i>AD</i> , eg $AD^2 = 11.4^2 + \text{``} 7.39^2 \text{''} - 2 \times 11.4 \times \text{``} 7.39 \text{''} \times \cos 86^\circ$	
		P1	for process to use correct order of operations, eg 129.96 + 54.6(5) – 11.7(5) (= 172.85)	
		A1	for answer in the range 13.1 to 13.2	If an answer is given within the range and then incorrectly rounded to 3 sig figs award full marks.

Pearson Edexcel - Thursday 8 June 2017 - Paper 2 (Calculator) Higher Tier

2.

5 (a)	3.9	M1	for a ratio of $\frac{8.1}{5.4}$ (=1.5) oe or $\frac{5.4}{8.1}$ (=0.66) oe or $\frac{2.6}{5.4}$ (= 0.48) oe or $\frac{5.4}{2.6}$ (= 2.07) oe
(b)	2.05	A1 M1	for $\frac{5.4}{8.1} \times 6.15$ oe (= 4.1) or $\frac{2.7}{8.1} \times 6.15$ oe or ft "scale factor" from (a)
		A1	cao

Pearson Edexcel - Tuesday 13 June 2017 - Paper 3 (Calculator) Higher Tier

3.

7		5.86	M1 A1	for sin $23 = \frac{AB}{15}$ NB Allow any alternative equivalent method to form an equation in AB 5.8 to 5.9
---	--	------	----------	---

Pearson Edexcel - Tuesday 13 June 2017 - Paper 3 (Calculator) Higher Tier

4.

8	5.59	M1	For use of $\pi r^2 = 49$, where r is the radius or $r = 3.9(49)$ or diameter = 7.8(9865		
		M1	For use of Pythagoras to set up an	For use of trigonometry to set up an	
			equation in x^2 e.g. $x^2 + x^2 = (d)^2$	equation in x eg sin $45 = x \div d$	
			or $x^2 = r^2 + r^2$		
		M1	(dep on M2) Rearrange to	Rearrange to $(x=)$ "7.898" × sin 45 oe	
			$(x^2 =) 2 \times "3.949"^2$		
		A1	5.5 to 5.6	'	

Pearson Edexcel - Specimen Papers Set 2 - Paper 2 (Calculator) Higher Tier

17	$\sqrt{8.35^2 - 6.05^2}$	5.754997828	B1 P1 P1	for finding bounds of one measurement, 8.25 8.35, 6.05 or 6.15 for process of choosing and using correct bounds for process of Pythagoras' rule with correct
			A1	bounds for 5.754(997)

Pearson Edexcel - Specimen Papers Set 1 - Paper 2 (Calculator) Higher Tier

6.

	angle BAD = angle DCA = 22.62° angle DBA = angle DAC = 67.38°	33.8	P1 P1 A1	for recognition of similar triangles or equal ratio of sides OR for a method to find angle BAD or angle DBA and state that this is the same as angle DCA or angle DAC for process to find CB , eg. $\frac{5}{13} = \frac{13}{CB}$ for an answer rounding to 33.8
--	---	------	----------	--

Pearson Edexcel - Specimen Papers Set 1 - Paper 3 (Calculator) Higher Tier

7.

9	$1.5 \times 1.7 - 1.7 \text{ Or}$ $0.5 \times 1.7 = (0.85)$	P1 for finding the difference in height by ratio or multiplier P1 for use of tan ratio P1 (dep) for "0.85" ÷ tan 52 oe
		A1 0.664 to 0.6641

Pearson Edexcel - Sample Paper 2 - (Calculator) Higher Tier

8.

6	9.54 P1	$10^2 - 5^2$ (=75)
	P1	"75" + 4 ² (=91)
	P1	$\sqrt{(10^2-5^2+4^2)}$
	A1	9.53 – 9.54

Pearson Edexcel - Wednesday 4 November 2015 - Paper 1 (Non-Calculator) Higher Tier

9.

16		13.75	5	M1 for finding perimeter of rectangle e.g. $5x + 5 + 5x + 5 + 4x + 4x$ (= $18x + 10$) M1 for finding perimeter of trapezium e.g. $9x - 2 + 7x - 2 + 10x$ (= $26x$
				-4) M1 for equation e.g. $26x - 4 = 18x + 10$ (or $8x = 14$) A1 for finding the value of x as 1.75
				B1 ft for subs of x into $5x + 5$ and evaluated (=13.75)

Pearson Edexcel - Friday 6 November 2015 - Paper 2 (Calculator) Higher Tier

10.

*15	(a) (b)	2.75	4	C1 for a complete reason eg Angles in a semicircle are 90°, alternate segment theorem M1 for 7 × sin 35 M1 for 7 × sin 35 × 2 M1 (indep) for "DB"× cos 70 A1 2.74 - 2.75

Pearson Edexcel - Friday 6 November 2015 - Paper 2 (Calculator) Higher Tier

24		31.1	5	M1 for $\frac{1}{2} \times 8.4 \times x \times \sin 40 = 100$ M1 for $100 \div (0.5 \times 8.4 \times \sin 40) = 37.(041)$ M1 (dep on 1st M1) for substituting the appropriate figures into the cosine rule = $9.42 \div 37.041 \cdot 2.2 \times 8.4 \times 37.041 \cdot \cos 40^\circ$ M1 (dep on previous M1) for correct order of evaluation or (c^2 =) 965.(897) A1 31.07 - 31.1
----	--	------	---	---

Pearson Edexcel - Thursday 4 June 2015 - Paper 1 (Non-Calculator) Higher Tier

12.

5		12	3	M1 for a method to find volume of a cuboid, eg. $2 \times 10 \times 15$ (= 300) or $5 \times 5 \times x$ (= 25x) M1 (dep) for "300" \div "25" oe A1 cao
				M1 for $10 \div 5$ (= 2) and $15 \div 5$ (= 3) or $10 \div 5$ (= 2) and $2 \div 5$ (= 0.4) M1 (dep) for $2 \times$ "2" \times "3" or $15 \times$ "2" \times "0.4" A1 cao

Pearson Edexcel - Monday 8 June 2015 - Paper 2 (Calculator) Higher Tier

13.

19	BC = $\frac{12}{\tan 60}$ = 6.92(8) DE = 6.92() × tan 30 = 4 CE = 12 + 4	16 with supporting working	4	M1 for a method to find BC or AC or AD B1 for angle EAD = 30° or AED = 60° or ACD = 30° or CAD = 60° M1 for a method to find CE A1 for 15.9-16.1 with supporting working
	AC = $\frac{12}{sin60}$ = 13.8(5) CE = $\frac{13.8(5)}{cos30}$			

Pearson Edexcel - Friday 7 November 2014 - Paper 2 (Calculator) Higher Tier

14.

16	$AC^2 = 5^2 + 3^2$	16.4	5	M1 for $(AC^2) = 5^2 + 3^2 = 34$)
	$AC = \sqrt{25 + 9}$ (=5.83)		133547	M1 for $\sqrt{25+9}$ or $\sqrt{34}$ (=5.83)
	$\frac{5}{5.83} = \frac{DB}{3}$			M1 for $\frac{5}{'5.83'} = \frac{DB}{3}$ or $DB \times AC = 5 \times 3$
	$DB = \frac{5}{5.83} \times 3 \ (= 2.57)$			M1 for $(DB =) \frac{5}{5.83!} \times 3$
	5+3+5.83+2.57=			A1 for 16.4 to 16.41
	OR			OR
	$AC = \sqrt{25 + 9}$ (=5.83)			M1 for $(AC^2) = 5^2 + 3^2$ (=34)
	$\tan A = \frac{3}{2}$			M1 for $\sqrt{25+9}$ or $\sqrt{34}$ (=5.83)
	$\tan A = \frac{1}{5}$			M1 for using a correct trig ratio in an attempt to find angle A or angle
	A = 30.96 $\sin 30.96 = \frac{DB}{B}$			C, e.g. $\tan A = \frac{3}{5}$, $\sin A = \frac{3}{5.83}$, $\cos C = \frac{3}{5.83}$
	$Sin 30.96 = \frac{1}{5}$ $DB = 5 \times \sin 30.96 \ (= 2.57)$			M1 for using DB in a a correct trig ratio, e.g. $\sin^4 30.96^{\circ} = \frac{DB}{5}$
	5+3+5.83+2.57=			A1 for 16.4 to 16.41

Pearson Edexcel - Friday 7 November 2014 - Paper 2 (Calculator) Higher Tier

21		8.52	5	M1 for $\frac{BD}{\sin 45} = \frac{7.4}{\sin 80}$ oe
				M1 for $(BD =)$ $\frac{7.4}{\sin 80} \times \sin 45 (= 5.3133)$
				M1 for $5.8^2 + 5.31^2 - 2 \times 5.8 \times 5.31 \cos 100$
				M1 (dep) for correct order of evaluation or 72.5(73)
				A1 for 8.51 – 8.52
				OR
				M1 for $\frac{AD}{\sin(180 - 80 - 45)} = \frac{7.4}{\sin 80}$ oe
				M1 for $(AD =) \frac{7.4}{\sin 80} \times \sin(180 - 80 - 45) (= 6.15)$
				M1 for 7.4^2 + $(6.15' + 5.8)^2 - 2 \times 7.4 \times (6.15' + 5.8) \times \cos 45$
				M1 (dep) for correct order of evaluation or 72.5(7398)
				A1 for 8.51 – 8.52

Pearson Edexcel - Friday 13 June 2014 - Paper 2 (Calculator) Higher Tier

16.

17	(a)	7.5	2	M1 for sight of $\frac{9}{6}$ (=1.5) oe or $\frac{6}{9}$ (=0.66) oe or $\frac{5}{6}$ (=0.83) oe or
				$\frac{6}{5}$ (=1.2) oe or a ratio, eg 6:9 oe or decimal, eg 1.5 oe A1 cao
	(b)	8	2	M1 for $12 \times \frac{6}{9}$ oe or $12 \div \frac{9}{6}$ oe or $\frac{12}{"7.5"} \times 5$ oe A1 cao

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

17.

22 (a)	'show'	2	M1 for $\frac{1}{2} \times (x - 4 + x + 5) \times 2x$ or $2x \times (x - 4) + \frac{1}{2} \times 2x \times 9$ A1 for completion with correct processes seen
(b)	13	3	M1 for $\frac{-1\pm\sqrt{1^2-4\times2\times-351}}{2\times2}$ condone incorrect sign for 351 M1 for $\frac{-1\pm\sqrt{2809}}{4}$ A1 for 13 NB for either M mark accept + only in place of \pm OR M2 for $(2x+27)(x-13)$ (M1 for $(2x\pm27)(x\pm13)$) A1 for 13

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

18.

24	14.4	3	M1 for $\pi \times 6.5^2 \times 11.5$ (=1526.42) M1 (dep) for $\frac{'1526.42'}{\pi \times 5.8^2}$ A1 for 14.4 - 14.5 OR M1 for $\frac{5.8}{6.5}$ or $\frac{6.5}{5.8}$ or 0.89(23) or 1.12(06896) M1 for 11.5 ÷ $\left(\frac{5.8}{6.5}\right)^2$ or 11.5× $\left(\frac{6.5}{5.8}\right)^2$ A1 for 14.4 - 14.5	
----	------	---	---	--

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

26	180-136-"34.4" =9.504	3.73	5	M1 for $\frac{\sin L}{12.8} = \frac{\sin 136}{15.7}$ M1 for $L = \sin^{-1} \left(\frac{\sin 136}{15.7} \times 12.8\right)$ or $\sin^{-1} 0.566$ A1 for $34.4 - 34.5$
				M1 for $\frac{LN}{\sin(180-136-34.4')} = \frac{15.7}{\sin 136}$ or $\frac{LN}{\sin(180-136-34.4')} = \frac{12.8}{\sin^3 34.4'}$ or $(LN^2 =)15.7^2 + 12.8^2 - 2 \times 15.7 \times 12.8 \times \cos(180-136-34.4')$ A1 for $3.73 - 3.74$

Pearson Edexcel - Monday 4 March 2013 - Paper 2 (Calculator) Higher Tier

20.

20		15.0	3	M1 for $8^2 + 8^2 - 2 \times 8 \times 8 \times \cos 140$ M1 (dep) for correct order of evaluation or 226.(05) A1 for answer in range 15.0 – 15.04
				OR
				M1 for $\frac{PR}{SIN\ 140} = \frac{8}{\sin\left(\frac{180-140}{2}\right)}$
				M1 for $PR = \frac{8(\sqrt{2})}{\sin(\frac{180-140}{2})} \times \sin 140$
				A1 for answer in range 15.0 – 15.04
				OR
				M1 for 8 × sin70 or 8 × cos20 M1 for 2 × 8 × sin70 or 2 × 8 × cos 20
				A1 for answer in range 15.0 – 15.04

Pearson Edexcel - Monday 4 March 2013 - Paper 2 (Calculator) Higher Tier

21.

25	1 + √5	M1 for $\frac{1}{2} \times x \times x \times \sin 30^{\circ}$ oe M1 for $\frac{1}{2} (x-2)(x+1)$ oe or $\frac{1}{2} \times (x-2) \times (x+1) \times \sin 90$ M1 (dep on at least one previous M1) for formation of equation from
		equating areas with x as the only variable A1 for $x^2 - 2x - 4 = 0$ oe in the form $ax^2 + bx + c = 0$ or $ax^2 + bx = c$ A1 cao

Pearson Edexcel - Tuesday 6 November 2012 - Paper 1 (Non-Calculator) Higher Tier

23	7.5	B1 for identifying A at 3 or D at 6 or A(3, 0) or D(0, 6) oe eg may be seen as labels on the diagram
		M1 for $0 = \frac{-1}{-2} \times 3 + c$
		M1 (dep on previous M1) for 6 + '1.5'
		Al cao
		OR
		B1 for identifying A at 3 or D at 6 or A(3, 0) or D(0, 6) oe eg may be seen as labels on the diagram
		M1 for 3/6 = OP/3 or 1.5 oe seen (from similar triangles) M1 for 6 + '1.5'
		A1 cao
		OR
		B1 for identifying A at 3 or D at 6 or A(3, 0) or D(0, 6) oe eg
		may be seen as labels on the diagram
		M1 for $(6+OP)^2 = (6^2+3^2) + (3^2+OP^2)$ oe (from Pythagoras)
		M1 for 6 + '1.5'
		Al cao

Pearson Edexcel - Thursday 8 November 2012 - Paper 2 (Calculator) Higher Tier

23.

15	1 1	$9 - 3 = 6$ $10^2 - 6^2 = 64$	12.0	5	M2 $10^2 - (9-3)^2 (=64)$ or $BC = 8$ (M1 $9-3 (=6)$ may be seen on diagram)
	1 1	$BC = 8$ $AC^2 = 9^2 + 8^2 = 145$			M1 (indep) $9^2 + {}^{1}BC^2$ where BC is a numerical value M1 (dep on previous M1) $\sqrt{81 + {}^{1}64}$
					A1 12.0 – 12.042

Pearson Edexcel - Thursday 8 November 2012 - Paper 2 (Calculator) Higher Tier

24.

17	$\sin 60^\circ = \frac{x}{32} \ x = 32 \times \sin 60 \ (=27.712)$	27.7	3	M1 $\sin 60 = \frac{x}{32}$ or $\frac{x}{\sin 60} = \frac{32}{\sin 90}$ oe M1 $(x =) 32 \times \sin 60$ or $(x =) \frac{32}{\sin 90} \times \sin 60$ A1 $27.7 - 27.72$ OR M1 $\cos(90 - 60) = \frac{x}{32}$ M1 $(x =) 32 \times \cos(90 - 60)$ A1 $27.7 - 27.72$ Radians: -9.7539398 Gradians: 25.888554 SC: B2 for an 375.4 or 25.8 to 25.9
				SC: B2 for an answer in the range (-) 9.75 to (-)9.754 or 25.8 to 25.9

Pearson Edexcel - Wednesday 13 June 2012 - Paper 2 (Calculator) Higher Tier

25.

18	$BD^{2} + 12^{2} = 16^{2} \text{ oe}$ $BD = \sqrt{256 - 144}$ $(=10.58)$ $\sin 40 = \frac{'10.58'}{CD}$ $CD = \frac{'10.58'}{\sin 40}$	16.5	5	M1 for $BD^2 + 12^2 = 16^2$ oe or $16^2 - 12^2$ or 112 seen M1 for $\sqrt{256 - 144}$ or $\sqrt{112}$ (=10.58) M1 for $\sin 40 = \frac{'10.58'}{CD}$ or $\cos 50 = \frac{'10.58'}{CD}$ M1 for $(CD =)$ $\frac{'10.58'}{\sin 40}$ or $\frac{'10.58'}{\cos 50}$ A1 for $16.4 - 16.5$ OR M1 for $BD^2 + 12^2 = 16^2$ oe or $16^2 - 12^2$ or 112 seen M1 for $\sqrt{256 - 144}$ or $\sqrt{112}$ (=10.58) M1 for $(BC =)$ '10.58'× $\tan 50$ or $\frac{'10.58'}{\tan 40}$ (=12.6) M1 for $\sqrt{12.6'^2 + '10.58'^2}$
				M1 for √12.6' ² +'10.58' ² A1 for 16.4 – 16.5

Pearson Edexcel - Friday 2 March 2012 - Paper 3 (Non-Calculator) Higher Tier

17	(a)	$\frac{ED}{8} = \frac{6}{4} ED = 12$	12	2	M1 for $\frac{6}{4}$ oe or $\frac{4}{6}$ oe or $\frac{8}{4}$ oe or $\frac{4}{8}$ oe (accept all these written as ratios)
	(b)	$\frac{2}{5} \times 25$ OR $4:6 = AC:CD$ $(25 \div (4+6)) \times 4$	10	2	M1 $\frac{2}{5} \times 25$ oe A1 cao OR M1 $(25 \div (4+6)) \times 4$ A1 cao OR M1 for $25 \div (1+1.5)$ A1 cao

Pearson Edexcel - Monday 5 March 2012 - Paper 4 (Calculator) Higher Tier

27.

7	$16^2 - 8^2 = 192$ $\sqrt{192} = 13.85640646$	13.86	3	M1 for showing the intention to square and subtract or sight of $16^2 - 8^2$ or 192 M1 for $\sqrt{256 - 64}$ or $\sqrt{192}$ or $8\sqrt{3}$ A1 for answer in range 13.85 to 13.86 OR M2 for $16\cos 30$ or $16\sin 60$ (M1 for $\cos 30 = \frac{QR}{16}$ or $\sin 60 = \frac{QR}{16}$) A1 for answer in the range 13.85 to 13.86
---	---	-------	---	---

Pearson Edexcel - Monday 14 November 2011 - Paper 4 (Calculator) Higher Tier

28.

17		$\frac{15+6}{15} \times 12.5$	17.5		M1 for $\frac{DE}{12.5} = \frac{15+6}{15}$ oe or $\frac{15}{15+6}$ or $\frac{15+6}{15}$ or $\frac{7}{5}$ or $\frac{5}{7}$ or $\frac{2}{5}$ or $\frac{5}{2}$ (1.4 or 0.4 or 2.5 or 0.714) M1 for $\frac{15+6}{15} \times 12.5$ or $\frac{7}{5} \times 12.5$ oe or $12.5 + \frac{2}{5} \times 12.5$ oe A1 cao
----	--	-------------------------------	------	--	--

Pearson Edexcel - Monday 14 November 2011 - Paper 4 (Calculator) Higher Tier

20	(a)	0	0.06	2	0 0
20	(a)	$\frac{8}{\sin 62}$	9.06	3	M1 for $\sin 62 = \frac{8}{PR}$ or $\cos(90-62) = \frac{8}{PR}$ or
		311 02			$\frac{\sin 90}{PR} = \frac{\sin 62}{8} \text{ oe}$
					M1 for (PR=) $\frac{8}{\sin 62}$ or $\frac{8}{\cos(90-62)}$
					$\mathbf{or} \sin 90 \times \frac{8}{\sin 62}$
					A1 for 9.06 – 9.061
					SC: B2 for -10.82 to -10.83 using rad or 9.672 to 9.674 using grad
					For methods involving trig or Pythagoras and then trig or Pythag No marks until a correct trig or pythag statement linking $SR = 4.25(36)$ and PR For example M1 for $(PR^2 =) 8^2 + 4.25(36)^2$ or $4.25(36)$
					$\cos 62 = \frac{4.25(36)}{PR}$ M1 for $\sqrt{64+18.0(9)}$ or $\frac{4.25(36)}{\cos 62}$
					A1 9.06 – 9.061
20	(b)	002 142 1002 2 14 0 00	12.6	4	B1 for angle $OPR = 62^{\circ}$
20	(6)	$QR^2 = 14^2 + 9.06^2 - 2.14.9.06 \cos 62$ = $196 + 82.08 - 253.68 \cos 62$ = 158.98	12.0	4	M1 for $QR^2 = 14^2 + 9.06^{\circ 2} - 2 \times 14 \times {}^{\circ}9.06^{\circ} \times \cos 62$ M1 for correct order of evaluation or 158.9 A1 (ft <i>PR</i>) for 12.6 – 12.62
					For methods using trigonometry and Pythagoras No marks until a correct Pythag statement with QR as only unknown (Let M be on PQ such that angle RMQ is 90°) For example B1 for angle $QPR = 62^\circ$ M1 for $(QR^2 =) 8^2 + (14 - PR\cos 62)^2$ M1 for $\sqrt{64 + '94.995'}$ or 158.9 A1 (ft PR) for $12.6 - 12.62$ SC: B3 for $10.3(5511)$ or 10.4 using rad or $11.6(402014)$ using grad

Pearson Edexcel - Friday 10 June 2011 - Paper 4 (Calculator) Higher Tier

30.

25 (a	$BC = \sqrt{8^2 - 3^2} = \sqrt{55} = 7.416198$ $CD = 7.416 \div \sin 50^\circ = 9.6811$	9.68	4	M1 for $8^2 - 3^2$ oe M1(dep) for $\sqrt{8^2 - 3^2}$ or 7.41 or 7.42 seen Or M1 for $A = \cos^{-1}\left(\frac{3}{8}\right)$ (=67.98°) M1(dep) for $3 \times \tan^4 67.98$ or 7.41 or 7.42 seen M1 for '7.4' + sin 50 A1 for 9.67 - 9.69 SC B3 for -28.2 to -28.3 using rad or $10.4 - 10.5$ using grad
(t	$CE^{2} = 19^{2} + 9.68^{2} - 2(19)(9.68) \cos 40$ $= 361 + 93.7024 - 367.84(0.766)$ $= 172.920612$ $CE = 13.1499$	13.1	3	M1 for (CE ² =) $19^{2} + (9.68)^{2} - 2 (19) (9.68) \cos 40$ M1(dep) for correct order of evaluation to reach $\sqrt{172.920612}$ A1 for $13.1-13.15$ SC B2 $26.4(5805)$ or 26.5 used radians or $12.5(3449)$ used gradians

Pearson Edexcel - Friday 12 November 2010 - Paper 4 (Calculator) Higher Tier

21	AB = 8 cos 37° = 8 (0.7986) = 6.389	6.39	3	M1 for $\cos 37 = \frac{AB}{8}$ M1 for $AB = 8 \cos 37^{\circ}$ or 6.4 seen (dep on 1 st M1) A1 for 6.38 - 6.39 OR M1 for $\frac{AB}{\cos 5} = \frac{8}{\cos 5}$
				M1 for $\frac{Sin53}{Sin90} = \frac{Sin53}{Sin90}$ M1 for $AB = \frac{8Sin53}{Sin90} AB$ or 6.4 seen (dep on 1 st M1)
				A1 for for 6.38 - 6.39 SC M2A0 for 6.12 (radians) or 6.69 (grad)

Pearson Edexcel - Monday 7 June 2010 - Paper 3 (Non-Calculator) Higher Tier

32.

18	(a)	$12 \times \frac{6}{4}$	18	2	M1 for sight of $\frac{6}{4}$ oe or $\frac{4}{6}$ oe or $\frac{12}{4}$ oe or $\frac{4}{12}$ oe or a ratio eg. 6:4 oe or decimal eg. 1.5 oe A1 cao
	(b)	$15 \times \frac{4}{6}$	10	2	M1 for $15 \times \frac{4}{6}$ oe or $\frac{15}{"18"} \times 12$ oe A1 cao

Pearson Edexcel - Friday 11 June 2010 - Paper 4 (Calculator) Higher Tier

33.

20	$\cos 58^{\circ} = \frac{AB}{16}$ $AB = 16 \times \cos 58^{\circ} = 8.4787$	8.48	M1 for $\cos 58^\circ = \frac{AB}{16}$ M1 (dep) for $16 \times \cos 58^\circ$ A1 for 8.47- 8.48 [SC:M2 A0 for 1.9-1.91 [RAD] or 9.8-9.81 [GRAD]]

Pearson Edexcel - Tuesday 10 November 2009 - Paper 4 (Calculator) Higher Tier

34.

22	(a)	$6 \times \frac{15}{10}$	9	2	M1 for sight of $\frac{15}{10}$ or $\frac{10}{15}$ or $\frac{10}{6}$ or $\frac{6}{10}$ oe seen A1 cao NB ratios get M0 unless of the form 1:n
	(b)	$12 \times \frac{10}{15}$ oe	8	2	M1 for correct use of $\frac{15}{10}$ or $\frac{10}{15}$ or $\frac{15}{12}$ or $\frac{12}{15}$ or $\frac{99}{15}$ or $\frac{6}{99}$ oe A1 for 8 or ft from $12 \times 6 \div 9^{\circ}$

OCR GSCE – Tuesday 3 November 2020 – Paper 4 (Calculator) Higher Tier

14	15.6[1] with correct working	6	M2 for [sin B =] $\frac{15 \times \sin 72}{18}$ oe or M1 for $\frac{\sin B}{15} = \frac{\sin 72}{18}$ oe	Correct working requires evidence of at least M1 AND M1 M2 implied by 0.7925 or 52.4
			AND	Alternative cosine rule (AB = x) M3 for quadratic equation with coefficients evaluated M2 for $x^2 + (-2 \times 15 \times \cos 72)x + (15^2 - 18^2)$
			M1 for 180 – 72 – <i>their</i> 52.4 implied by 55.6 or 55.57	[=0] oe or M1 for $18^2 = x^2 + 15^2 - 2 \times x \times 15\cos 72$
			and M2 for [AB=] $\frac{18 \times \sin their 55.57}{\sin 72}$ oe or M1 for $\frac{[]}{\sin their 55.57} = \frac{18}{\sin 72}$ oe	M2 for correct use of quadratic formula or M1 for use of quadratic formula with at most two errors
			If 0 scored award SC2 for 15.6 with insufficient working	

${\tt OCR~GSCE-Thursday~8~November~2018-Paper~5~(Non-Calculator)~Higher~Tier}$

36.

13	(a)	AC = 40sin30	M2	M1 for $\frac{AC}{40} = \sin 30 \text{ oe}$	
		20 and evidence that sin 30 = 0.5	A1	If 0 scored, B1 for sin 30 =0.5 oe	
13	(b)	20 (√3 -1)	5	B4 for $20\sqrt{3} - 20$ or $\sqrt{1200} - 20$ or B3 for $\sqrt{1200}$ or $\frac{40\sqrt{3}}{2}$ or M2 for $40\cos 30$ oe or M1 for $\cos 30 = \frac{AB}{40}$ oe	Other methods are possible e.g. Pythag e.g. M2 for [AB =] $\sqrt{40^2 - 20^2}$ e.g. M1 for AB ² + 20 ² = 40 ²

OCR GSCE – Thursday 7 June 2018 – Paper 5 (Non - Calculator) Higher Tier

37.

11		8 nfww	6		nfww - must check method before giving 6 marks must not come from wrong working
				B1 for $\cos 60 = 0.5$ oe soi M1 for $\frac{BD}{12} = \cos 60$ oe A1 for $[BD =] 6$	e.g. $\sin 30 = 0.5$ e.g. $\frac{BD}{12} = \sin 30$
				M2 for $\sqrt{10^2 - their BD^2}$ or M1 for their BD ² + AB ² = 10 ² oe or for 10 ² – their BD ²	For M2 or M1 0 < their BD < 10 and BD must be identified first on diagram or in working

OCR GSCE – Tuesday 2 November 2017 – Paper 4 (Calculator) Higher Tier

17	(a)	Attempt to use the cosine formula	M1		Evidenced by the formula e.g. $a^2 = b^2 + c^2$ -2bc cos A or better
		$[]^2 =$ 14 ² + 18 ² - 2 × 14 × 18 cos 46 oe	M2		
		or	or		
		cosine formula with at most 2 errors or correct cosine formula starting cos $[\dots] = \frac{14^2 + 18^2 - [\dots]^2}{2 \times 18 \times 14}$	M1		
		13.03	A1		
	(b)	35.48 to 35.6	3	B1 for 180 — 78 — 81 or 21	could be on diagram
				M1 for $\frac{13.0}{sintheir21} = \frac{[]}{sin78}$ oe or better	accept any correct method

OCR GSCE – Thursday 25 May 2017 – Paper 4 (Calculator) Higher Tier

39.

14	92 or 92.28 to 92.6	6	M3 for correct explicit cos rule to find angle A in ADE with cos as subject. $[\cos A =] \frac{28^2 + 41^2 - 22^2}{2 \times 28 \times 41} \text{ oe soi}$ or $ \mathbf{M2} \text{ for correct implicit form of the cos} $ rule to find angle A $22^2 = 28^2 + 41^2 - 2 \times 28 \times 41 \times \cos A $ or $ \mathbf{M1} \text{ for either of the above forms with only one error} $ AND $ \mathbf{M2} \text{ for correct sine rule e.g.} $ $ \frac{64 \times \sin 72}{\sin their A} \text{ oe soi} $ or $ \mathbf{S0} \text{ or } $	accept any correct method implied by [A=] 30.3 to 30.4
			only one error	
			AND	
			$\frac{64 \times \sin 72}{\sin t h e i r A}$ oe soi	
			or	
			M1 for $\frac{64}{\sin their A} = \frac{[]}{\sin 72}$ oe	
			if 0 scored SC1 for explicit form of cos	
			rule to find angle D or E in ADE e.g. [cos D =] $\frac{28^2 + 22^2 - 41^2}{2 \times 28 \times 22}$	
			$[\cos D =] {2 \times 28 \times 22}$	

AQA GSCE – Tuesday 19 May 2020 – Paper 1 (Non - Calculator) Higher Tier 40.

	Alternative method 1			
	6.5 × 9 or 58.5		oe	
	or	M1		
	6.5 × 7 or 45.5			
	$\frac{6.5 \times 9 - 2 \times 6.5}{2}$ or $\frac{58.5 - 13}{2}$		oe division may be implied	
	or $\frac{6.5 \times 7}{2}$	M1dep	eg $\frac{7}{9}$ = 45.5, $\frac{3.5}{9}$ = 22.5	25 scores M1M1
	or $\frac{45.5}{2}$			
	22.75 or $\frac{91}{4}$ or $22\frac{3}{4}$	A1	oe	
8	Alternative method 2			
	6.5 × 9 or 58.5		oe	
	or	M1		
	6.5 × 4.5 or 29.25			
	$\frac{6.5 \times 9}{2}$ - 6.5		oe eg 6.5 × (4.5 – 1) or	6.5 × 3.5
	or	M1dep		
	6.5 × 4.5 – 6.5			
	22.75 or $\frac{91}{4}$ or $22\frac{3}{4}$	A1	oe	
	Ad	ditional G	Buidance	
	Answer 22.8 or 23 with 22.75 in work	ing		M1M1A1
	Answer 22.8 or 23 without 22.75 in w	orking		A0

AQA GSCE – Thursday 4 June 2020 – Paper 2 (Calculator) Higher Tier

	$\frac{1}{2} \times (2.8 + 2.1) (\times h)$ or 2.45(h)	M1	oe eg $2.1(h) + 0.5(h) \times 0.7$ any letter may be implied	
13	$\frac{1}{2} \times (2.8 + 2.1) \times h = 39.2$ or $(2.8 + 2.1) \times h = 39.2 \times 2$ or $39.2 \div 2.45$ or $78.4 \div 4.9$	M1dep	oe equation or calculation	
	16	A1	SC1 8	
	Additional Guidance			
	Different letter used eg $2.1h + 0.5x \times 0.7$ is M0 unless recovered			

AQA GSCE – Thursday 4 June 2020 – Paper 2 (Calculator) Higher Tier 42.

	Alternative method 1				
	$\tan 62 = \frac{h}{5}$	M1	oe eg tan $(90 - 62) = \frac{5}{h}$ or $\frac{h}{\sin 62} = \frac{5}{\sin 28}$ any letter		
	5 × tan 62 or 9.4(0)	M1dep	oe eg $\frac{5}{\tan 28}$ or $\frac{5}{\sin 28} \times \sin 62$		
	$\sin x = \frac{\text{their } 9.4(0)}{12}$ or $\sin x = [0.78, 0.784]$	M1dep	oe eg sin $x = \frac{5 \times \tan 62}{12}$ or $\cos x = \frac{\sqrt{12^2 - \text{their } 9.4^2}}{12}$		
18	[51.536, 51.63]	A1	accept 52 with M3 seen		
	Alternative method 2				
	$\left(\frac{5}{\cos 62}\right)^2 - 5^2$ or [88.4, 88.43]	M1	oe		
	$\sqrt{\left(\frac{5}{\cos 62}\right)^2 - 5^2}$ or 9.4(0)	M1dep	oe		
	$\sin x = \frac{\text{their } 9.4(0)}{12}$ or $\sin x = [0.78, 0.784]$	M1dep	oe eg $\cos x = \frac{\sqrt{12^2 - \text{tr}}}{12}$	neir 9.4 ²	
	[51.536, 51.63]	A1	accept 52 with M3 seen		
	Additional Guidance				
	Answer in range with truncation to 51			M1M1M1A1	

AQA GSCE – Tuesday 21 May 2019 – Paper 1 (Non - Calculator) Higher Tier 43.

	One of (102 →) 100 (8.14 →) 8	M1			
13	their 100 = $0.5 \times x^2 \times$ their 8 or $(x^2 =)$ their 100 ÷ 8 × 2 or $(x^2 =)$ 100 ÷ their 8 × 2 or 25 or their 8 × 5 × 5 × 0.5 = 100 or 8 × 5 × 5 × 0.5 = their 100	M1dep	oe must have used at least one correct 1 sf value		
	5 with M2 seen	A1			
	Additional Guidance				
	If working is done with approximations and with the given values ignore the working with the given values and mark the working with approximations				

AQA GSCE – Monday 12 November 2018 – Paper 3 (Calculator) Higher Tier 44.

	Alternative method 1		
	48 ÷ 2 × 3 or 72	M1	oe
	their 72 ÷ 2 or 36	M1dep	$\cos^{-1}\left(\frac{36}{141}\right)$ or 75.2
23	141 ² – their 36 ² or 18 585	M1dep	ft their base ÷ 2 sin (their 75.2) = $\frac{h}{141}$ or tan (their 75.2) = $\frac{h}{\text{their 36}}$
	$\sqrt{141^2 - \text{their } 36^2}$ or $\sqrt{18.585}$	M1dep	141 × sin (their 75.2) or their 36 × tan (their 75.2)
	[136.2, 136.4] or 136	A1	

Continues on next page

	Alternative method 2			
	141 ÷ 3 or 47	M1	oe	
	24 and their 47 × 2 or 24 and 94 or 12 and their 47	M1dep	$\cos^{-1}\left(\frac{24}{94}\right)$ or 75.2	
23 cont	their $94^2 - 24^2$ or 8260 or $\sqrt{8260}$ or 90.88 or their $47^2 - 12^2$ or 2065 or $\sqrt{2065}$ or 45.44	M1dep	$\sin (\text{their } 75.2) = \frac{h}{\text{their } 94}$ or $\tan (\text{their } 75.2) = \frac{h}{24}$	
	$\sqrt{\text{their } 94^2 - 24^2} \times 3 \div 2$ or $\sqrt{8260} \times 3 \div 2$ or 90.88 × 3 ÷ 2 or $\sqrt{\text{their } 47^2 - 12^2} \times 3$ or $\sqrt{2065} \times 3$ or 45.44 × 3	M1dep	their 94 × sin (their 75.2) × 3 ÷ 2 or 24 × tan (their 75.2) × 3 ÷ 2	
	[136.2, 136.35] or 136	A1		
	Ad	ditional (Guidance	
	Values may be seen on diagram in co	orrect pos	sitions	

AQA GSCE – Thursday 6 November 2017 – Paper 2 (Calculator) Higher Tier 45.

	Alternative method 1				
	$5w \times w$ or $5w^2$ or $1620 \div 5$ or 324 or trials a value of w for $5w^2$	M1	oe Any letter eg 5 × 12 × 12 or 50 ×	10	
	$\sqrt{\frac{1620}{5}}$ or $\sqrt{324}$	M1dep			
	18	A1	A0 if –18 also given		
	Alternative method 2				
19	$l \times \frac{l}{5}$ or $\frac{l^2}{5}$ or 1620×5 or 8100	M1	oe Any letter		
	or trials a value of l for $\frac{l^2}{5}$		eg $\frac{60 \times 60}{5}$ or 80×16		
	$\sqrt{1620 \times 5}$ or $\sqrt{8100}$ or 90	M1dep			
	18	A1	A0 if -18 also given		
	Additional Guidance				
	Answer 18			M2A1	
	18 in working with 90 on answer line			M2A0	
	Trials for $5w^2$ or $\frac{l^2}{5}$ without answer 18	8		M1M0A0	

AQA GSCE – Sample Paper 3 (Calculator) Higher Tier 46.

	6.5 - 2.3 or 4.2 and 5 or 85 seen	M1	
	$\sin 5 = \frac{6.5 - 2.3}{AD}$ or		oe
	$\cos 85 = \frac{6.5 - 2.3}{AD}$ or	M1	
15	$\left(\frac{6.5-2.3}{\tan 5}\right)^2 + \left(6.5-4.2\right)^2$		
	$\frac{6.5 - 2.3}{\sin 5}$ or $\frac{6.5 - 2.3}{\cos 85}$ or		oe
	$\sqrt{\left(\frac{6.5-2.3}{\tan 5}\right)^2 + \left(6.5-4.2\right)^2}$	M1dep	
	[48, 48.2]	A1	